A-stable Runge–kutta Methods for Semilinear Evolution Equations

نویسنده

  • MARCEL OLIVER
چکیده

We consider semilinear evolution equations for which the linear part generates a strongly continuous semigroup and the nonlinear part is sufficiently smooth on a scale of Hilbert spaces. In this setting, we prove the existence of solutions which are temporally smooth in the norm of the lowest rung of the scale for an open set of initial data on the highest rung of the scale. Under the same assumptions, we prove that a class of implicit, A-stable Runge–Kutta semidiscretizations in time of such equations are smooth as maps from open subsets of the highest rung into the lowest rung of the scale. Under the additional assumption that the linear part of the evolution equation is normal or sectorial, we prove full order convergence of the semidiscretization in time for initial data on open sets. Our results apply, in particular, to the semilinear wave equation and to the nonlinear Schrödinger equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability under Galerkin Truncation of A-stable Runge–kutta Discretizations in Time

We consider semilinear evolution equations for which the linear part is normal and generates a strongly continuous semigroup and the nonlinear part is sufficiently smooth on a scale of Hilbert spaces. We approximate their semiflow by an implicit, A-stable Runge–Kutta discretization in time and a spectral Galerkin truncation in space. We show regularity of the Galerkintruncated semiflow and its ...

متن کامل

Exponentially Accurate Hamiltonian Embeddings of Symplectic A-stable Runge–kutta Methods for Hamiltonian Semilinear Evolution Equations

We prove that a class of A-stable symplectic Runge–Kutta time semidiscretizations (including the Gauss–Legendre methods) applied to a class of semilinear Hamiltonian PDEs which are well-posed on spaces of analytic functions with analytic initial data can be embedded into a modified Hamiltonian flow up to an exponentially small error. As a consequence, such timesemidiscretizations conserve the m...

متن کامل

Stability and convergence of staggered Runge-Kutta schemes for semilinear wave equations

A staggered Runge-Kutta (staggered RK) scheme is the time integration Runge-Kutta type scheme based on staggered grid, which was proposed by Ghrist and Fornberg and Driscoll in 2000. Afterwords, Vewer presented efficiency of the scheme for linear and semilinear wave equations through numerical experiments. We study stability and convergence properties of this scheme for semilinear wave equation...

متن کامل

Runge–Kutta time semidiscretizations of semilinear PDEs with non-smooth data

We study semilinear evolution equations [Formula: see text] posed on a Hilbert space [Formula: see text], where A is normal and generates a strongly continuous semigroup, B is a smooth nonlinearity from [Formula: see text] to itself, and [Formula: see text], [Formula: see text], [Formula: see text]. In particular the one-dimensional semilinear wave equation and nonlinear Schrödinger equation wi...

متن کامل

Numerical Methods for Multiscale Problems

[2] J. Bourgain, Fourier Transform Restriction Phenomena for Certain Lattice Subsets and Applications to Nonlinear Evolution Equations, Geometric and Functional Analysis 3 (1993), 107–156. [3] M. Christ, J. Colliander and T. Tao, Instability of the periodic nonlinear Schrödinger equation, Preprint, 2003. [4] M. Hochbruck, A. Ostermann, Explicit exponential Runge-Kutta methods for semilinear par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012